Features

Kunming Underground MBR: a Chinese case study

China features many of the largest municipal wastewater MBRs in the world. Apart from their capacity, some also are ambitious in their construction. The below-ground installation at Kunming City, commissioned in 2012, is one such example. At an ADF (average daily flow) capacity of 150,000 m3/d and a peak daily flow of 195,000 m3/d, it is a substantial plant.

view feature

Membrane operation | Feasibility, optimisation and costs | Pre-treatment and post-treatment | Water quality and treatability

MBR OPEX − the theory of running costs

Operational costs in MBRs are marginally higher than those of conventional activated sludge (CAS). Firstly, permeating water through a membrane demands energy. In the case of the immersed technologies (iMBRs) this means that the overall specific aeration demand (SAD) is higher, since air is needed both for maintaining the process biology in the aeration tank and scouring the immersed membrane.

view feature

Membrane operation | Process biology | Feasibility, optimisation and costs

The 2016 MBR Survey results

Last year, we asked 'What’s the main issue with MBRs?' This time our question focused on the topic of sludge − most of your responses from the previous three surveys had been based around this topic so we felt it was worthy of further investigation.

view feature

Surveys

Mechanical shear in membrane bioreactors

In membrane separation systems, it is probably shear which is the most significant parameter for driving the membrane process. Pressure is obviously important for forcing the water through the membrane but shear is arguably the property of the system which largely determines the rate of membrane fouling and so, ultimately, the flux.

view feature

Feasibility, optimisation and costs | Pre-treatment and post-treatment | Water quality and treatability

Arla milk powder factory: membrane bioreactor plant for treating dairy wastewater

In 2012, the Arla milk powder factory in Sweden planned to expand operations. The increased production process generated larger wastewater volumes which the receiving municipal treatment plant was unable to process. Therefore, the dairy decided to build their own treatment plant on site, which needed to be installed within a short period of time and meet strict discharge requirements.

view feature

Feasibility, optimisation and costs | Pre-treatment and post-treatment | Water quality and treatability

Improving MBR flux: Ultrafiltration with a twist

In autumn 2015, after two years of research and development, Pentair brought to market its new ‘Helix’ product. An enhancement to X-Flow tubular membrane technology, Helix features a helically-winding ridge on the inside of the membrane which is designed to tackle cake build-up and enhance flux. The technology has so far been tested on both industrial effluents and municipal wastewater.

view feature

Membrane operation | Feasibility, optimisation and costs | Pre-treatment and post-treatment | Water quality and treatability