You say you want the resolution − loading fluctuations in membrane bioreactors

Misc Simon Judd 2

Simon Judd

Professor Simon Judd has over 20 years’ experience in teaching the fundamentals of water and wastewater technologies and is author of The MBR Book, Industrial MBRs and watermaths (3rd ed). See the Judd Water & Wastewater Consultancy website and Simon's profile on for more information.

Contact Simon at

It is recognised that MBRs and the immersed configuration (iMBR) in particular operate more efficiently when fluctuations in loading are reduced. If the option is available, and this normally means space, a buffer tank can reduce fluctuations sufficiently to allow more optimal use of the membranes, and a cost analysis (Verrecht et al, 2010) has shown this to be slightly more cost effective than installing additional membranes for large municipal installations.

However, the costs incurred by very large peak loads can become very significant, particularly if space is at a premium and recourse has to be made to installing large amounts of membrane, which are then underutilised during periods of low flows. This underutilisation can to some extent be mitigated by reducing the energy demand by switching to either more intermittent aeration (for HF membranes) or reduced bulk aeration (for FS membranes) in the case of iMBRs.

For sMBRs the number of membranes on line can be reduced directly without altering the permeation conditions at all, which then means that the unused membranes can effectively be used as spares.

So, whilst extreme peak loads are unwelcome for any membrane process, and inevitably adds to the capital cost through requiring additional membranes to be installed, it seems that there are ways of adapting the conditions to limit the increase in specific energy demand (kWh/m3 permeate) normally associated with low flows.

Indeed, for the air-lift sidestream in particular, it is actually technically possible (though obviously not practically feasible) to match the number of membrane modules on line with the flow. For a medium to large plant with over 100 modules, this equates to a resolution of <1%.

And then we’d have to start improving the precision of the flow monitoring equipment ...


Verrecht, B., Maere, T., Nopens, I., Brepols, C., Judd, S. The cost of a large-scale hollow fibre MBR (2010) Water Research, 44 (18), 5274−5283


All comments are moderated and may be edited or deleted at any time. You must not post anything that is defamatory, illegal, offensive or which contravenes our privacy policy guidelines. Email addresses are only used for comments purposes.
Contact to remove or edit a comment.


Information on this page has been supplied by third parties. You are reminded to contact the third party concerned to confirm information is accurate, up to date and complete before acting upon it.

Share this page